Zum Inhalt springen

Retargeting trotz(t) Datenschwund!

SEA
|
27. Oktober 2020
Inhalt

Awareness- und Traffic-Kampagnen im Display Advertising finden oftmals ihre Veredelung der angesprochenen Nutzer über entsprechende Retargeting-Kampagnen. Doch was tun, wenn der Datenpool an eingesammelten Nutzern immer kleiner wird? In diesem Beitrag wird aufgezeigt, wie der verlustige Datenanteil zur Aussteuerung und Optimierung von Retargeting-Kampagnen effektiv genutzt werden kann.

Datenschwund und die “Mutter
aller Trackingprobleme”

Schon seit geraumer Zeit
haben vor allem datengetriebene Werbeformen mit einer schwindenden Datenbasis
zu kämpfen. Speziell die Bildung von Nutzerpools für Retargeting, aber auch die
Erfolgsmessung generell, werden immer schwieriger. Cookie basierte Techniken
kämpfen hier eindeutig mit zunehmendem Datenschwund.

Ganz entscheidend sorgen die Restriktionen rund um die DSGVO und das Cookie-Urteil des EuGH dafür, dass immer weniger Daten für Retargeting sowie für die Performancekontrolle an sich zur Verfügung stehen. Darüber hinaus spielen natürlich auch Themen wie Cookie-Blocking der Browser eine immer größere Rolle.  Egal ob Safari (ITP), Firefox (ETP) oder zukünftig auch Chrome, alle Browser werden über kurz oder lang per default Third-Party-Cookies blocken.

Datenentwicklung bei Implementation des Cookie-Banner

Der Haken bei allen
Zukunftstechnologien

Unbestritten gibt es
zahlreiche Ansätze, wie dieser Herausforderung zukünftig begegnet werden soll,
denn, die Tage der Cookies und damit auch aller alternativen
Nutzeridentifizierungsmethoden wie Fingerprinting & Co. sind gezählt.

Serverseitiges Tracking usw. sind heiß gehandelte Lösungen, allerdings, und das ist die aktuelle Herausforderung, sind diese (noch) nicht massenkompatibel verfügbar. Derzeit sind Cookies der Standard, und damit sollten wir so gut wie möglich umgehen. Aus der aktuellen Datenlage, die optimalen Schlüsse zu ziehen, ist doch im Alltag trotz aller Zukunftsorientierung die echte Herausforderung.

Der blinde Fleck im
Datenbild

All diese genannten Faktoren machen uns auf den ersten Blick auf dem einen Datenauge blind, wir können einen Teil der Nutzer auf unserer Seite schlicht und einfach nicht mehr sehen, nachverfolgen und dementsprechend auch nicht wieder per Retargeting ansprechen. Doch genau diesen blinden Fleck können wir uns zunutze machen! Wie?

Step #1: Nutzercluster
bilden

Bei allen negativen
Auswirkungen, die die Implementation eines Cookie-Banners für unseren Datenpool
mit sich bringen, so gibt es doch den einen ganz entscheidenden Faktor, den wir
uns hier zunutze machen können. Ich meine damit den klar definierbaren
Zeitpunkt, ab dem der Banner Auswirkungen auf das Tracking hat, nämlich den
Zeitpunkt des Einbaus.

Ab diesem Zeitpunkt
teilt sich unser Datenbild in zwei Cluster!

  • Cluster #1 enthält dabei alle Nutzer, die über den Cookie-Banner ihre Zustimmung zum Tracking erteilt haben.
    Auf die unterschiedlichen Abstufungen der Zustimmung gehe ich hier bewusst nicht ein, da es das ganze Prozedere sehr komplex macht und für die Beispiele einfach nicht praktikabel ist. Am Ende sind dem Detailgrad dieses Vorgehens aber natürlich keine Grenzen gesetzt.
  • Cluster #2 umfasst alle Nutzer, die nicht getrackt werden wollen, also dem Cookie-Banner nicht zugestimmt haben.

Um nun beide Cluster für
die Wiederansprache von Nutzern anwenden zu können, bilden wir an zwei Punkten
Nutzerpools und kombinieren diese miteinander:

  • Nutzerpool #1: alle Nutzer, die das Werbemittel geklickt haben (ist direkt im Adserver abbildbar, der Nutzerconsent ist auch hier Voraussetzung)
  • Nutzerpool #2: alle Nutzer, die dem Tracking zugestimmt haben. Am ehesten lässt sich dieser Pool durch das Setzen einer Softconversion mit Zustimmung des Cookie-Banners realisieren.

Kombiniert ergibt das Ganze nun
Retargetinglisten, die ich optimal zur Wiederansprache verwenden kann:

  • RTA-Liste #1
    Nutzer, die auf der Landingpage getracked werden konnten, da sie ihren Consent gegeben haben. [Nutzerpool #2 (Tracking-Consent)]
  • RTA-Liste #2
    Nutzer, die auf ein Banner geklickt haben, aber nicht auf der Landingpage getracked werden konnten, da sie dem Cookie Banner auf der Landingpage nicht zugestimmt haben. [Nutzerpool #1 (Klick auf Ad) - Nutzerpool #2 (Tracking-Consent)]

Step #2: Nutzercluster
Performance-Check

Um Rückschlüsse auf die
grundlegende Performance beider Cluster zu ziehen, gehen wir noch einen Schritt
weiter. Wir nutzen den oben genannten Vorteil der Cookie-Banner-Implementation,
nämlich das Wissen um den Einbau-Zeitpunkt.

Es lässt sich also ohne
Weiteres die Performance der Cluster vor Implementation mit dem Vergleichszeitraum
ab Implementation vergleichen.

Wenn wir diesen
Clustervergleich nun an verschiedenen Positionen der Website Journey vornehmen,
lassen sich dabei interessante Rückschlüsse auf die Cluster treffen.

Hier nun zwei einfache
Beispiele, um dies zu verdeutlichen:

Nehmen wir an, dass der
messbare Traffic auf der Landingpage in beiden Beispielen mit Implementierung
des Cookie-Banners um 30% zurückgeht.

  • Cluster #1 ist also für 70% des Traffics verantwortlich.
  • Cluster #2 macht 30% des Traffics aus.

In beiden Fällen analysieren wir die Vergleichszeiträume zusätzlich noch in der Dimension der Conversions. Für Beispiel 1 beträgt der Rückgang der gemessenen Conversions nach Implementation des Cookie-Banners lediglich 10%.

Cluster #1 ist hier also für 90% der Conversions verantwortlich. Hier zeigt sich deutlich, aufgrund des hohen Conversion-Anteils, dass der weiterhin trackbare Cluster überdurchschnittlich performant ist. Beispiel 2 verhält sich komplett anders, hier gehen die Conversions um 80% zurück. Cluster #1 ist hier also für einen vergleichsweise kleinen Anteil von 20% der Conversions verantwortlich.

Diese Ergebnisse lassen
konkrete Rückschlüsse auf die Performance beider Cluster zu.

Während im Beispiel 1
der Performance-Fokus sicherlich ganz klar auf Cluster #1 liegt, könnte eine
Wiederansprache der Nutzer in Cluster #2 im Zweifel sogar vernachlässigt werden.
Bezogen auf Beispiel 2 wäre es ein klarer Fehler, Cluster #2 zu
vernachlässigen, da ein relevanter Teil der Performance aus diesem Cluster
kommt.

Neben dem Abgleich der
Cluster aus Traffic- und Conversion-Ebene kann natürlich jeder einzelne Schritt
in der Website Journey exakt genauso ausgewertet werden.

Genau wie wir oben den
Cookie-Consent als Softconversion gesetzt und mit dem Klick auf die Ad
kombiniert haben, lässt sich auch jede andere Interaktion des Nutzers auf der
Webseite ebenfalls als Softconversion definieren und nach dem gleichen Muster
auswerten. Dem Detailgrad sind hier so gut wie keine Grenzen gesetzt.

All diese Nutzerpools
lassen sich perfekt als Retargeting-Zielgruppe verwenden!

Fazit

Voraussichtlich wird es
zukünftig komplett andere Lösungen geben, Nutzergruppen anzusprechen, Kampagnen
gemäß Zielsetzung zu optimieren und das Ganze ohne den vielgescholtenen
Datenschwund.

Aktuell gibt es diese
massentaugliche Lösung allerdings noch nicht. Da helfen pragmatische Ansätze,
das Problem nicht nur zu bewundern, sondern die Perspektive zu wechseln und aus
dem Datenschwund Ableitungen für die Optimierung herzuleiten.

Unser Ansatz ist einer davon! Denn Datenverlust soll die Lust auf Display Advertising nicht rauben.

In diesem Sinne, Ärmel hoch, clustern und go!

Dieser Artikel erschien zuerst bei ADZINE am 19.10.2020.


Kostenlose Online-Marketing-Webinare

Wir bieten jede Woche kostenlos zwei Webinare an. Alle Themen und die nächsten Termine findet ihr auf: web-netz.de/webinare.


Bildnachweis Titelbild: AndreyPopov / istockphoto.com

Gefallen? Dann einfach teilen!

Autor/in

Nico Loges Paid Media Marketing

Seit Ende der 90er Jahre ist Nico Loges im Online-Marketing tätig. Anfänglich war die Vermarktung von Musikern der Schwerpunkt seiner Arbeit. Anfang 2011 verschrieb er sich komplett dem performancegetriebenen Online-Marketing und verantwortete inhouse als “Head of” alle Marketingkanäle von einem der größten deutschen Onlinehändler für Eisenwaren. Mitte 2014 folgte dann der Wechsel auf die Agenturseite. Bei webnetz betreute Nico Loges Kunden in den Bereichen Paid Search. Seit 2019 verantwortet er als Abteilungsleiter des Bereichs Paid Media Marketing mehr als 25 Mitarbeiter. Als Autor gehen Veröffentlichungen im Fachbuch "Leitfaden Data Driven Marketing" und im Agenturblog auf sein Konto. Des Weiteren hält Nico regelmäßig Vorträge auf Konferenzen und teilt sein Wissen in webnetz-Webinaren wie auch externen Workshops und anderen Weiterbildungsformaten.

Webinare

Kommende Webinare passend zum Thema

Newsletter

Online-Marketing-News direkt ins Postfach

Blogs, Podcasts, Webinare zu aktuellen Themen:
Melden Sie sich jetzt für unseren Newsletter an.